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the solution of which 

I& = et(O) + ef@ + 0 (E"), i = i, 2, 3 

qp= Po(@/4_--Ry2$, q@'=p*(l--rrq, e'- 

F (R) = oxp ((p&) (is* - R’i4)) 

describes a flow in a tube with permeable walls for a constant rate of injection (suction) 
"n,_l = -p&. 

For arbitrary functions f and $7 an invariant solution of the operator X, may be written 
in the form 

where AI(i= i,2,3) are arbitrary constants, which may be adjusted so that 

cp (8,) = 0. B1> 0, i-i,2 

This solution corresponds to a flow in an annular channel, the radius of the walls of 
which varies as Rf = (&/g)"~. Since g(a) is an arbitrary function and the initial systen of 
equations is invariant under shifts in 2, we may choose a function B (4 and a range of 
variation of s such that Rt is practically constant. 
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DIFFRACTION OF SHEAR WAVES BY AN ELASTIC CYLINDRICAL INCLUSION 

WITH TWO CUTS ON THE PHASE BOUNDARY* 

K.P. BELYAYEV 

A method /l/ similar to that used in the case of one cut /2/ is used to 
determine the stress and deformation at the boundary of a cylindrical 
inclusion with two cuts placed on the contact contour. .The external 
perturbation varies sinusoidally and is a plane wave in an isotropic 
medium. At the boundary pf the inclusion the shear wave is reflected as 
a shear wave. 

1. Pormtation of the probtsm. Using a cylindrical system of coordinates we consider 
the effect of a plane shear wave on an elastic inclusion in the form of a circular cylinder 
r<a.a=(---m, OQ). bonded elastically along the edge r==. 8E6)=(al, n - a*) u (n + a,,2n -a,), If 
(--m,=) where the area r= a, 8 E Go, (Go = I--a,,aJ U In - cg,s + a& corresponds to two cuts 
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(Fig.1). To simplify the calculations, the cuts are located symmetrically with respect to 
the incident wave front. 

For antinlane deformation, in the case of the above load, the only non-zero component 
of the displacement 

where B= w/c and 
At the boundary 

satisfied 

u,=w satisfies the following wave equation: 

(A+fP)W=O, r>a (A+&S)W=O, r<a (1.1) 

fil = W/C, are wave numbers. 
of the inclusion with the medium the following conditions should be 

w++w-=W; o++u-=u, r=n, BCeQ (1.2) 
a++ IJ-= 0, I?= 0, r= a, e E R, 

where a* is the stress corresponding to the shear and the plus sign denotes a component of 
the incident wave and a minus denotes a component of the reflected wave. Infinite incident 
and reflected waves should satisfy the radiation condition and the Meixner condition at the 
edge /3/. Thus, taking into account the symmetry of the problem, we shall look for a solution 
of Eq.(l.l) of the form (the time factor eGro' is omitted) : 

w+ + w- = 2 [ e,W, $g + A&&] cos ne 
n=o 

-i 
1, n=O 

a*= 2(-r)ll, n=1,2,...,m 

A solution of the second equation of (1.1) should be bounded at the initial coordinate 
and have finite energy: thus, we have 

2. S01utio?l. Representing the stress in terms of the displacement and substituting the 
boundaries conditions (1.2) we obtain a dual series equations. To solve these, we use a 
technique for solving a special class of dual equations /l/. For tIlzP, we add the terms 

--apslh (e) - iflaW’, cos qB exp (ipa cos 0) (2.i) 

to the left-hand side of the third condition of (1.2). 
Here, h(8) is an unknown function to the shear stress on the edge r= LI. 0 EP, correspond- 

ing to the field of the perturbed wave, u is the shear modulus for the medium and p, is that 
for the inclusion. The dual equations derived by adding terms to (2.1) are given as follows: 

A(e) - i@zWocOs e exp(- &cos e) 

The function A,(e) corresponds to the substitution p-pL1. The coefficients An and B, 

are found from Fourier series expansions of the right-hand sides of Eqs.(2.1) and are given 
by: II--a* 

Afo = -baW,J,(i%z) -+ 1 h(e)de 
a. 

II--a. II-a, 

s h(e)de, p”=* s h (t) CDS ntdt. 

a, a* 
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En is a function like lo,,where r,, has the form given in formula (2.3) for p,, (see below). 
Inserting the coefficients A,, and B, obtained into condition (2.2) and changing the 

order of summation and integration, we obtain an integral equation with a discontinuous 

kernel 

(2.3) 

P,= I, (pa)2 (-i)rr[$J,,'(fkz)+ I,,(@)] cosntl 
n=1 

We introduce new variables 5 and dp according to the formulae 
cos t = b + bl cbs 5, Ccm fl = b + b, CoS cp (2.4) 

where b and b, are constants such that the variables 'p and 5 completely cover the range 
from 0 to n. They are determined in the form 

b = (CDS a, - Co.9 a,)/& b, = (cm a, + Cos a,)/2 

From Eq.(2.4), we have 

aeiacp = 6 (e), e (e) = (~09 a, - cos ep (~0~ a, f cos e)‘W2 sin 8 (2.5) 

The function h(e) ae/acp satisfies the Dirichlet condition in the interval from 0 to n; 
thus, it has a Fourier series expansion 

m 

d, CO9 (?” - i) T, ‘p = SIX COS COS 8 - 6 
k-4 bl 

m=1 

Taking into account (2.5), we have 

h (6) 1 k(d,, n-a,) - 
rn=l 

(2.6) 

Fig.1 Fig.2 Fig.3 

Substituting expression (2.6) into Eq.(2.3) and using the orthogonality of the functions, 
we obtain a system of finite algebraic equations in the unknowns dj (m): 

N 
2wo b,‘a,,, + $7, a,~~,,, = (1 (Pn, - em) + Co& 

,=I 
(2.7) 

where b& , DJ,,,, CO and b, are the same as in /2/. 
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3. SpeciaZ cases. We will determine the stress intensity factor for a crack in the 
illuminated zone 

ca 

For cracks in the shadow zone, we have 

To compare the results, we 
intensity factor is as in /2/. 
stress intensity factor has the 

consider the case when a, = 0, a, # 0, when the stress 
For a,# 0, q = 0 we have the case of a shadow crack when the 
form 

K III = 

To determine the static stress intensity factor, we use asymptotic cylindrical functions 
with small values of the argument. From system (2.7), we find (for N= 0) 

In the limit we obtain 

Then the static stress intensity factor is determined by the expression 

A,"= 2PPIl/XWQlU 

where m=i for an illuminated crack and m= 2 for an shadow crack. 

4. Numerical results. Fig.2 shows a graph of the calculated values of the stress 
intensity factor for a constant wave number for cracks in various positions, against the 
crack length. Here, curve 1 corresponds to an illuminated crack and curve 2 to a shadow, 
crack, the dashed lines represent the case of a single crack and the continuous lines that of 
two cracks. As distinct from the behaviour of the dynamic stress intensity factor, in the 
static case, the graphs are characterized by the presence of local maxima and minima. These 
two point to the hypothesis that there is a distinctive resonance for a given crack length 
and load frequency. 

If there is a single crack on the contact contour, located in the unilluminated zone, 
the relative stress intensity factor is given by A' tr= 1 KIII /IhI, which is shown in Fig.3 for 

a constant crack length CL= ~14 as a function of the wave number, for various contact 
characteristics. Here, the following notations is used for the curves: l-rigid contact, Z- 
elastic contact with PI/P= 20 and Pi/P = 2 and a-elastic in the case of a uniform medium. 
In this case, phenomena analogous to those mentioned in the previous example are observed. 

Using the local fracture criterion /4/ for this case we obtain the local fracture 
criterion 

1. 

2. 

3. 
4. 
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